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1 Dipartimento di Fisica, Università di Roma ‘La Sapienza’, 00185 Rome, Italy
2 Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy
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Abstract
Two novel classes of many-body models with nonlinear interactions ‘of goldfish
type’ are introduced. They are solvable provided the initial data satisfy a single
constraint (in one case; in the other, two constraints), i.e., for such initial
data the solution of their initial-value problem can be achieved via algebraic
operations, such as finding the eigenvalues of given matrices or equivalently the
zeros of known polynomials. Entirely isochronous versions of some of these
models are also exhibited, i.e., versions of these models whose nonsingular
solutions are all completely periodic with the same period.

PACS numbers: 02.30.Hq, 02.30.Ik, 45.50.Jf
Mathematics Subject Classification: 34C25, 34C27, 37F10, 37J35

(Some figures in this article are in colour only in the electronic version)

1. Introduction and main results

Long time ago the possibility was noted of using the nonlinear mapping among the zeros
and the coefficients of a polynomial in order to identify solvable (classes of) many-body
problems, characterized by nonlinear equations of motions of Newtonian type (with one-body
and two-body, generally velocity-dependent, forces) [1, 2]. (Terminology: here and hereafter
we denote as solvable any problem whose solution can be achieved by algebraic operations,
such as finding the zeros of polynomials). The starting point of these developments is a linear
PDE such as

ψtt − [a1 − (N − 1)a6z]ψt + [a2 + a3z − 2(N − 1)a10z
2]ψz

− (a4 + a5z + a6z
2)ψzt + (a7 + a8z + a9z

2 + a10z
3)ψzz

−N [a3 + (N − 1)(a9 − a10z)]ψ = 0. (1)
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(Notation: hereafter N is an arbitrary positive integer (N � 2 ), the symbols aj and (see
below) Aj , Bj denote (a priori arbitrary) constants, and subscripted variables denote partial
differentiations of the dependent variable ψ(z, t); note incidentally that this PDE coincides,
up to trivial notational changes, with equation (2.3.3-1) of [2]). One then notes that this PDE
admits solutions which are (for all time) a monic polynomial of degree N in z, and introduces
the N zeros zn(t) and the N coefficients cm(t) of such a polynomial solution

ψ(z, t) =
N∏

n=1

[z − zn(t)] = zN +
N∑

m=1

cm(t)zN−m. (2)

It is then easily seen that the fact that ψ(z, t) satisfies the linear PDE (1) implies that the
coefficients cm(t) evolve according to the following system of linear ODEs [2]:

c̈m − (N + 1 − m)a4ċm−1 − [(N − m)a5 + a1]ċm + ma6ċm+1

+ (N + 1 − m)(N + 2 − m)a7cm−2 + (N + 1 − m)[(N − m)a8 + a2]cm−1

−m[(2N − 1 − m)a9 + a3]cm + m(m + 1)a10cm+1 = 0. (3)

Likewise, it can be shown (see [2], or section 2 below) that the zeros zn(t) evolve according
to the following system of nonlinear PDEs:

z̈n = a1żn + a2 + a3zn − 2(N − 1)a10z
2
n

+
N∑

m=1,m�=n

{
(zn − zm)−1[2żnżm + (żn + żm)(a4 + a5zn)

+ a6(żnzm + żmzn)zn + 2
(
a7 + a8zn + a9z

2
n + a10z

3
n

)]}
. (4)

Notation and terminology: hereafter indices such as m, n range from 1 to N (unless otherwise
indicated), superimposed dots denote differentiations with respect to the time t, and the N
zeros zn(t) are interpreted as the coordinates of N ‘point particles’ evolving according to the
‘Newtonian equations of motion’ (4) featuring one-body and two-body velocity-dependent
forces; and an analogous interpretation shall be given in all analogous cases below. Unless
otherwise explicitly specified, we hereafter assume that all quantities under consideration
(except the time t) are generally complex numbers, so that the motions of the particles
characterized by the coordinates zn(t) take place in the complex z-plane; of course such
motions can easily be reinterpreted as taking place in a ‘more physical’ real plane, but we shall
not devote space to discuss this well-known aspect (see, for instance, chapter 4 of [2], entitled
‘Solvable and or integrable many-body problems in the plane, obtained by complexification’).

Clearly, since the parameters aj are (arbitrary) constants, the solution of the system
of linear ODEs (3) satisfied by the coefficients cm(t) can be achieved by purely algebraic
operations; and once the N coefficients cm(t) of the polynomial ψ(z, t) have been obtained,
the computation of the N zeros zn(t) of this polynomial, see (2), is also a purely algebraic task.
Hence the determination of the N coordinates zn(t) whose time evolution is characterized by
the Newtonian equations of motion (4 ) can be achieved via purely algebraic operations: this
N-body problem is solvable.

The ten-parameter class of solvable N-body models (4) is vast, and it includes several
interesting cases [2]. Even the very simplest case, characterized by the vanishing of all the
parameters aj , is quite remarkable: in this case the Newtonian equations of motion read simply

z̈n =
N∑

m=1,m�=n

2żnżm

zn − zm

, (5a)
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and the solution of the initial-value problem for this problem is given by the following simple
proposition: the N coordinates zn(t) are the N zeros of the following algebraic equation in z:

N∑
n=1

żn(0)

z − zn(0)
= 1

t
. (5b)

Note that, by multiplying this equation by the product
∏N

n=1[z − zn(0)], it becomes a
polynomial equation, with time-dependent coefficients, of degree N in z, which indeed
generally has N solutions, at least if one allows the coordinates zn to be complex numbers,
hence their time evolution to take place in the complex z-plane; indeed such an evolution
can also be reinterpreted as the motion of N-point particles on a real (physical) plane, and
its phenomenology is quite amusing, see section 2.4.2 of [2], entitled ‘The simplest model:
explicit solution (the game of musical chairs), Hamiltonian structure’. Because of these
remarkable features, as well as the neat form of the Newtonian equations of motion (5a)
(which also happen to be Hamiltonian), this N-body model was given the honorary title of
‘goldfish’ [3], and this attribute was then extended to several solvable models featuring on the
right-hand side of their Newtonian equations of motion (acceleration equal force) terms such
as that appearing on the right-hand side of (5a): note that these solvable models ‘of goldfish
type’ include now the models belonging to the ten-parameter class (4) and several models
outside of this class (for an updated review of such models see [4]).

In the present paper we exhibit two classes of solvable N-body models ‘of goldfish type’
which are, to the best of our knowledge, new, hence, in particular, not included in the class
(4). These novel models are however solvable only provided the particle coordinates zn(t)

satisfy additional conditions, which must, of course, be compatible with the time evolution,
so that it is sufficient that they be satisfied, in the context of the initial-value problem, by
the initial data. This limitation could be considered as a drawback of these new models, or
instead as a feature that adds to their interest in the context of mathematical physics. The
hunch that such models should exist was suggested to us by recent results [7–11] concerning
certain exceptional polynomial subspaces, as tersely reviewed in appendix A.

The first class of these models is characterized by the following (six-parameter) Newtonian
equations of motion:

z̈n = A1żn + A2 + A3zn − 2A4

zn

+
N∑

m=1,m�=n

{
(zn − zm)−1

[
2żnżm + A5(żn + żm)zn

+ 2
(
A4 − A2zn + A6z

2
n

)]}
. (6)

Here the novel element—not included in the class (4)—is that associated with the constant A4.
In the following section we show that these equations of motion entail that the coefficients
cm(t)—related to the coordinates zn(t) via the mapping (2)—evolve according to the following
system of linear ODEs:

c̈m − [(N − m)A5 + A1]ċm + (N − 1 − m)(N + 2 − m)A4cm−2

− (N + 1 − m)(N − 1 − m)A2cm−1

−m[(2N − 1 − m)A6 + A3]cm = 0, (7)

of course with c0 = 1 and cm = 0 for m > N and m < 0 (consistently with (2), and also
with this system of ODEs). Note that the linear character of this system of ODEs entails the
solvable character of the Newtonian equations of motion (6). But these findings are only valid
if the coordinates zn(t) satisfy the constraint

N∑
n=1

1

zn(t)
= 0, (8)
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and correspondingly (see below) the coefficients cm(t) satisfy the constraint

cN−1(t) = 0. (9)

The treatment of section 2 implies that these constraints, (8) respectively (9), are indeed
compatible with the evolution equations (6) respectively (7); hence they are automatically
satisfied, in the context of the initial-value problem, provided the initial data for the N-body
problem (6) satisfy the following two conditions:

N∑
n=1

1

zn(0)
= 0,

N∑
n=1

żn(0)

[zn(0)]2
= 0, (10)

and correspondingly the initial data for the linear system of ODEs (7) satisfy the two
conditions

cN−1(0) = ċN−1(0) = 0. (11)

Before turning to the second class of new models, let us display an equivalent avatar of
the Newtonian equations of motion (6):

z̈n =
(

A1 +
N − 2

2
A5

)
żn − (N − 2)A2 + [A3 + (N − 2)A6]zn − 2A4

zn

+
A5

2
Ż + A6Z +

N∑
m=1,m�=n

{
(zn − zm)−1

[
2żnżm +

A5

2
(żn + żm)(zn + zm)

+ 2A4 − A2(zn + zm) + A6
(
z2
n + z2

m

)]}
, (12)

where

Z(t) =
N∑

n=1

zn(t). (13)

This second version, (12) with (13), has the merit to immediately yield (by summing over n
from 1 to N—using (8) and the vanishing of the double sum on the right-hand side due to the
antisymmetry of the summand under the exchange of the dummy indices m and n) the linear
ODE

Z̈ = [A1 + (N − 1)A5]Ż − N(N − 2)A2 + [A3 + 2(N − 1)A6]Z,

which is consistent, via the relation

c1(t) = −Z(t) (14)

implied by (2), with the equation satisfied by c1(t) that obtains by setting m = 1 in (7). On the
other hand, the first version, (6), has the merit to feature only one-body and two-body forces.

The second class of new models is characterized by the following (seven-parameter)
Newtonian equations of motion:

z̈n = B1żn − (N − 1)B2zn − 2(N − 1)B3z
2
n + B4

żn

zn

+
N∑

m=1,m�=n

{
(zn − zm)−1

[
2żnżm + (żn + żm)(B4 + B5zn)

+B6(żnzm + żmzn)zn + 2
(
B7zn + B2z

2
n + B3z

3
n

)]}
. (15)
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Clearly the novel element (in (15) relative to (4)) is now that associated with the constant
B4. In the following section we show that these equations of motion, (15), entail that the
coefficients cm(t)—related to the coordinates zn(t) via the mapping (2)—evolve as follows:

c̈m − (N − m)B4ċm−1 − [(N − m)B5 + B1]ċm + mB6ċm+1 + (N + 1 − m)(N − m)B7cm−1

−m(N − m)B2cm + m(m + 1)B3cm+1 = 0, (16)

entailing the solvable character of the Newtonian equations of motion (6). But this conclusion
is valid only if the coordinates zn(t) satisfy the constraint

N∑
n=1

żn(t)

zn(t)
= 0, (17)

and correspondingly (see below) the coefficients cm(t) satisfy the constraint

ċN (t) = 0. (18)

The treatment of section 2 implies that these constraints are indeed compatible with the
evolution equations (15) and (16); hence they are automatically satisfied, in the context of
the initial-value problem, provided the initial data for the N-body problem (15) satisfy the
following single condition:

N∑
n=1

żn(0)

zn(0)
= 0, (19)

and correspondingly the initial data for the linear system of ODEs (16) satisfy the single
condition

ċN (0) = 0. (20)

The paper is organized as follows. In section 2 the results reported above are proven.
In sections 3 and 4 we discuss tersely the behaviour of these two solvable N-body problems,
and in section 5 entirely isochronous versions of these novel models are identified: they are
characterized by the fact that all their nonsingular solutions are completely periodic (namely,
periodic in all their dependent variables zn(t)) with the same basic period (or possibly with
a—generally not too large [12]—integer multiple of it). Section 6 outlines tersely further
developments, to be reported in future publications. The paper is completed by two appendices:
in the first one certain relevant results concerning exceptional polynomial subspaces are tersely
reviewed; in the second one certain computations are confined whose treatment in the body of
the paper would disrupt the flow of the presentation.

2. Proofs

The procedure to arrive at the results reported above is by now textbook material [2, 4], hence
our treatment here can be terse; although the new twist should be emphasized, implying that the
solvable character of the new models applies only provided their time evolution is somewhat
restricted—as already indicated in the preceding section. The starting point of our treatment
is the linear PDE (but see the remark below)

ψtt − [a1 − (N − 1)za6]ψt + [a2 + a3z − 2(N − 1)a10]ψz

− (a4 + a5z + a6z
2)ψzt + (a7 + a8z + a9z

2 + a10z
3)ψzz

−N [a3 + (N − 1)(a9 − a10z)]ψ

= a11

z

[
ψt − ċN

cN

]
+

a12

z

[
ψz − cN−1

cN

]
. (21)



5340 F Calogero and D Gómez-Ullate

(Notation: the symbols aj denote again (a priori arbitrary) constants, subscripted variables
denote partial differentiations and the dependent variable ψ(z, t) as well as the coefficients
cN(t) and cN−1(t) are characterized by (2)).

Remark. The consistency of this evolution PDE, (21), with the fact that the dependent variable
ψ(z, t) is the monic polynomial (2) of degree N in z shall be clear from what follows. Note
however that this evolution equation, (21), is a linear PDE iff the two constants a11 and a12

vanish (in which case it coincides with (1)); otherwise it is in fact a nonlinear functional
equation, as implied by the formulae (clearly entailed by (2))

cN(t) = ψ(0, t), cN−1(t) = ψz(0, t). (22)

Via (2), this evolution equation (21) entails4 the following (systems of) evolution ODEs
for the N coefficients cm(t) and for the N zeros zn(t):

c̈m − (N + 1 − m)a4ċm−1 − [(N − m)a5 + a1]ċm + ma6ċm+1

+ (N + 1 − m)(N + 2 − m)a7cm−2 + (N + 1 − m)[(N − m)a8 + a2]cm−1

−m[(2N − 1 − m)a9 + a3]cm + m(m + 1)a10cm+1

= a11

(
ċm−1 − ċN

cN

cm−1

)
+ a12

[
(N + 2 − m)cm−2 − cN−1

cN

cm−1

]
, (23)

z̈n = a1żn + a2 + a3zn − 2(N − 1)a10z
2
n + a11

żn

zn

− a12

zn

+
N∑

m=1,m�=n

{
(zn − zm)−1

[
2żnżm + (żn + żm)(a4 + a5zn)

+ a6(żnzm + żmzn)zn + 2
(
a7 + a8zn + a9z

2
n + a10z

3
n

)]}
. (24)

The observation that system (23) is consistent with c0 = 1 and cm = 0 for m > N and m < 0
confirms the consistency with the evolution equation (21) of the assumption that ψ(z, t) be a
monic polynomial of degree N in z, see (2).

In order to guarantee that these Newtonian equations of motion, (24 ), be solvable, we
must make sure that the corresponding evolution equations (23) be effectively linear. A
straightforward way to achieve this goal is to set to zero the two parameters a11 and a12; but
this simply reproduces the previously known (class of) solvable N-body models (4). There are
however two other possibilities, which do yield two new classes of integrable systems.

The first possibility is to set a11 = 0 (but a12 �= 0) and then to require that the system of
evolution equations (23) be consistent with constraint (9). It is indeed plain that system (23)
becomes then linear:

c̈m − (N + 1 − m)a4ċm−1 − [(N − m)a5 + a1]ċm + ma6ċm+1

+ (N + 1 − m)(N + 2 − m)a7cm−2 + (N + 1 − m)[(N − m)a8 + a2]cm−1

−m[(2N − 1 − m)a9 + a3]cm + m(m + 1)a10cm+1

= a12(N + 2 − m)cm−2, (25)

and it is moreover easily seen (by setting m = N − 1) that this system is consistent with
constraint (9), provided the parameters aj satisfy the following restrictions:

a4 = a6 = 2a7 − a12 = a8 + a2 = a10 = a11 = 0, (26)

4 The derivation of the first of these two systems of ODEs is a rather trivial exercise; the derivation of the second
system is as well trivial, but readers who find this second task exceedingly painstaking are advised to use the formulae
given in section 2.3.2 of [2], or (even more conveniently) in appendix A of [4].



New solvable many-body problems of goldfish type 5341

entailing that system (23) becomes

c̈m − [(N − m)a5 + a1]ċm + (N − 1 − m)(N + 2 − m)a7cm−2 − (N + 1 − m)

× (N − 1 − m)a2cm−1 − m[(2N − 1 − m)a9 + a3]cm = 0, (27)

and likewise system (24) becomes

z̈n = a1żn + a2 + a3zn − 2a7

zn

+
N∑

m=1,m�=n

{
(zn − zm)−1

[
2żnżm + (żn + żm)a5zn

+ 2
(
a7 − a2zn + a9z

2
n

)]}
. (28)

It is easily seen that these systems coincide with (7) and (6) after the following trivial relabelling
of the parameters: aj = Aj for j = 1, 2, 3, 5; a7 = A4, a9 = A6. And it is moreover plain
that constraint (9) corresponds to constraint (8), since relation (2) among the zeros zn(t) and
the coefficients cm(t) of the polynomial ψ clearly entails5

cN(t) = (−)N
N∏

n=1

zn(t), cN−1(t) = (−)N−1
N∑

m=1

N∏
n=1,n�=m

zn(t), (29a)

hence

cN−1(t) = −cN(t)

N∑
n=1

1

zn(t)
. (29b)

The second possibility is to set a12 = 0 (but a11 �= 0) and then to require that the system
of evolution equations (23) be consistent with constraint (18). It is indeed plain that system
(23) becomes then linear:

c̈m − [(N + 1 − m)a4 − a11]ċm−1 − [(N − m)a5 + a1]ċm + ma6ċm+1

+ (N + 1 − m)(N + 2 − m)a7cm−2 + (N + 1 − m)[(N − m)a8 + a2]cm−1

−m[(2N − 1 − m)a9 + a3]cm + m(m + 1)a10cm+1 = 0, (30)

and it is moreover easily seen (by setting m = N) that this system is consistent with constraint
(18), provided the parameters aj satisfy the following restrictions:

a4 − a11 = a7 = a2 = (N − 1)a9 + a3 = a12 = 0, (31)

entailing that system (23) becomes

c̈m − (N − m)a4ċm−1 − [(N − m)a5 + a1]ċm + ma6ċm+1 + (N + 1 − m)(N − m)a8cm−1

−m(N − m)a9cm + m(m + 1)a10cm+1 = 0, (32)

and likewise system (24) becomes

z̈n = a1żn − (N − 1)a9zn − 2(N − 1)a10z
2
n + a4

żn

zn

+
N∑

m=1,m�=n

{
(zn − zm)−1

[
2żnżm + (żn + żm)(a4 + a5zn)

+ a6(żnzm + żmzn)zn + 2
(
a8zn + a9z

2
n + a10z

3
n

)]}
. (33)

5 Actually to reach these conclusions one needs the additional condition cN (t) �= 0, namely (see (29a)) zn(t) �= 0;
but the fact that such a condition must be imposed initially, and that it shall subsequently hold for all regular solutions
of the Newtonian equations of motion (6), is implied by the presence of the term proportional to A4 on the right-hand
side of these equations of motion.
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It is easily seen that these systems coincide with (16) and (15) after the following trivial
relabelling of the parameters: aj = Bj for j = 1, 4, 5, 6; a8 = B7, a9 = B2, a10 = B3. And
it is moreover plain6 that constraint (18) corresponds to constraint (17), see (29a).

3. Behaviour of the N-body models belonging to the first class

In this section we discuss—in somewhat more detail than done in the introductory
section 1—the behaviour of the solutions of N-body models belonging to the first class,
see (6).

The general solution of the linear system of ODEs (7) with (9) is given by the formula

cm(t) =
N∑

�=1

[
γ

(+)
� v(�)(+)

m exp
(
λ

(+)
� t

)
+ γ

(−)
� v(�)(−)

m exp
(
λ

(−)
� t

)]
. (34)

Here the N-vectors v(�)(±) are the 2N eigenvectors corresponding to the 2N eigenvalues λ
(±)
�

of the (generalized) eigenvalue equation

(λ21 + λM(1) + M(2))v = 0, (35)

where the N × N matrices M(1) and M(2) are defined componentwise as follows (see (7)):

M(1)
m,m = −[(N − m)A5 + A1], (36a)

M(2)
m,m = −m[(2N − m − 1)A6 + A3], (36b)

M
(2)
m,m−1 = −(N + 1 − m)(N − 1 − m)A2, (36c)

M
(2)
m,m−2 = (N − 1 − m)(N + 2 − m)A4, (36d)

with all other elements vanishing. As for the 2N constants γ
(±)
� , they are arbitrary except for

the two requirements

N∑
�=1

[
γ

(+)
� v

(�)(+)
N−1 + γ

(−)
� v

(�)(−)
N−1

] = 0, (37a)

N∑
�=1

[
γ

(+)
� v

(�)(+)
N−1 λ

(+)
� + γ

(−)
� v

(�)(−)
N−1 λ

(−)
�

] = 0, (37b)

which clearly correspond to constraints (11) via (34). Of course, in the context of the initial-
value problem, the 2N constants γ

(±)
� are determined by the 2N initial data cm(0), ċm(0)

(including (11)) via the system of 2N linear equations

cm(0) =
N∑

�=1

[
γ

(+)
� v(�)(+)

m + γ
(−)
� v(�)(−)

m

]
, (38a)

ċm(0) =
N∑

�=1

[
γ

(+)
� v(�)(+)

m λ
(+)
� + γ

(−)
� v(�)(−)

m λ
(−)
�

]
. (38b)

And in the context of the initial-value problem for the Newtonian N-body model (6) the initial
values cm(0), ċm(0) are determined by the initial values zn(0), żn(0) via the following relations
implied by (2):

N∏
n=1

[z − zn(0)] = zN +
N∑

m=1

cm(0)zN−m, (39)

6 Again with the additional condition cN (t) �= 0, which need not be highlighted since the presence of the term
proportional to B4 on the right-hand side of the Newtonian equations of motion (15) guarantees automatically its
validity for all regular solutions of this system of ODEs.
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−
N∑

n=1

żn(0)

N∏
m=1,m�=n

[z − zm(0)] =
N∑

m=1

ċm(0)zN−m. (40)

Remark. Let us emphasize that, while in the context of the initial-value problem for the
N-body problem (6) the constants γ

(±)
� depend on the initial data (as just explained), the 2N

eigenvalues λ
(±)
� —characterizing via (34) the time evolution of the coefficients cm(t) of the

polynomial ψ(z, t) whose N zeros zn(t) yield the coordinates of the N moving particles—do
not depend on the initial data, but only on the parameters Aj that specify the N-body model
(6) under consideration.

We now note that the N ×N matrix M(1) is diagonal, and the N ×N matrix M(2) is triangular
(M(2)

nm = 0 if n < m). Hence the eigenvalues λ(±)
m are just the roots of the N (decoupled)

second-order equations

λ2 − [(N − m)A5 + A1]λ − m[(2N − m − 1)A6 + A3] = 0, (41)

i.e.

λ(±)
m = 1

2 {(N − m)A5 + A1 ± �m}, (42a)

�2
m = [(N − m)A5 + A1]2 + 4m[(2N − m − 1)A6 + A3]

= (NA5 + A1)
2 +

(
A2

5 − 4A6
)
m2

+ 2[2A3 + 2(2N − 1)A6 − A5(A1 + NA5)]m. (42b)

The behaviour of the solutions of the N-body problem (6) with (8) is given by the time
evolution of the N zeros zn(t) of the polynomial ψ(z, t), see (2), whose coefficients evolve
exponentially in time as entailed by (34) with (3). The study of the time evolution of the particle
coordinates zn(t) is therefore reduced to the study of the motion of the zeros of a polynomial
whose coefficients depend exponentially on time. In the generic case—characterized by
exponents not all of which are purely imaginary—the asymptotic behaviour of these zeros
in the remote past and future—characterizing the qualitative behaviour of the N-body model
under consideration—can therefore be easily evinced by the treatment provided in appendix
G (entitled ‘Asymptotic behaviour of the zeros of a polynomial whose coefficients diverge
exponentially’) of [2]. The subclass of N-body models (6) characterized by parameters Aj

satisfying the following restrictions,

A1 = iα, A3 = γ, A5 = iβ, A6 = η, (43a)
[(N − m)β + α]2 − 4m[(2N − m − 1)η + γ ] > 0, m = 1, . . . , N, (43b)

(where the four constants α, β, γ, η are all real )—conditions which are necessary and sufficient
to guarantee that all the 2N eigenvalues λ(±)

m are imaginary numbers—is instead clearly
characterized by the property that all motions are confined. The more special subcase in
which all the 2N eigenvalues λ(±)

m are integer multiples of a single quantity iω with ω a
positive constant, ω > 0, so that all the coefficients cm(t) are periodic with the same period
T = 2π/ω, is discussed in section 5.

4. Behaviour of the N-body models belonging to the second class

In this section, we discuss—in somewhat more detail than done in the introductory section 1;
but rather tersely, to avoid repetitions of developments already elaborated in the preceding
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section 3—the behaviour of the solutions of N-body models belonging to the second class,
see (15).

The general solution of the linear system of ODEs (16) with (18) is given by a formula
entirely analogous to (34), and the subsequent developments are also analogous to those
reported in the preceding section, except that now the N × N matrices M(1) and M(2) are
defined componentwise as follows (see (16)):

M
(1)
m,m+1 = mB6, (44a)

M(1)
m,m = −[(N − m)B5 + B1], (44b)

M
(1)
m,m−1 = −(N − m)B4, (44c)

M
(2)
m,m+1 = m(m + 1)B3, (44d)

M(2)
m,m = −m(N − m)B2, (44e)

M
(2)
m,m−1 = (N + 1 − m)(N − m)B7, (44f )

with all other elements vanishing. As for the 2N constants γ
(±)
� , they are again arbitrary

except now for the single requirement

N∑
�=1

[
γ

(+)
� v

(�)(+)
N λ

(+)
� + γ

(−)
� v

(�)(−)
N λ

(−)
�

] = 0, (45)

which clearly corresponds to constraint (20) via (34).
Since the N × N matrices M(1) and M(2) are now neither diagonal nor triangular, the

computations of the eigenvalues λ(±)
m cannot be done now in explicit form (in the general

case, with the coefficients Bj appearing in (4) unrestricted). Therefore, a discussion of the
actual behaviour of the solutions of this second solvable model cannot be done here in this
general case to the same explicit extent as in the case of the first class of models, treated in the
preceding section. There is however a subcase of this second model for which the treatment
becomes closely analogous to that of the preceding section. Indeed clearly if

B3 = B6 = 0, (46)

the two N × N matrices M(1) and M(2) become both triangular, hence the corresponding
eigenvalue equation becomes again a second-order algebraic equation that can be easily
solved7. Indeed it is easily seen that if the restriction (46) holds, this second-order equation
determining the exponents λ(±)

m that characterize the behaviour of the second class of models
coincides with (a subcase of) the second-order equation (41) determining the exponents λ(±)

m

that characterize the behaviour of the first class of models, provided one sets

A1 = B1, A5 = B5, A6 = B2, A3 + (N − 1)A6 = 0, (47)

hence the discussion given above for the first class of models becomes applicable to the second
class of models provided they are restricted by condition (46). And this includes of course
also the more special, entirely isochronous, subcase, as discussed in section 5.

7 The N × N matrices M(1) and M(2) become triangular also in the case B4 = B7 = 0, but whenever B4 vanishes
the novelty of the case treated in this paper disappears, so we do not pursue this case.
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5. Isochronous versions of the solvable models

A current definition of isochronous systems (see, for instance, [4]) attributes this property to
any dynamical system that possesses at least one open (hence fully-dimensional) region in its
phase space within which all solutions are completely periodic (i.e., periodic in all dependent
variables) with the same fixed period (of course, the period being independent of the initial
data, as long as they stay within that isochronicity region). The class of isochronous systems is
vast [4], and it includes a large zoo of systems interpretable as N-body problems characterized
by autonomous equations of motion of Newtonian type. A class of such isochronous systems
is characterized by the Newtonian equations of motion (see example 4.1.2–3 in [4])

z̈ = −iωż +
K∑

k=1

F (−k)(z, ż + iωz). (48a)

Here underlined variables indicate N-vectors, ω is a nonvanishing real constant, K is an
arbitrary positive integer and the K (N-vector-valued) functions F (−k)(z, z̃) are required to
be analytic (but not necessarily holomorphic) in all their 2N arguments and to satisfy the
scaling property

F (−k)(cz, z̃) = c−kF (−k)(z, z̃), k = 1, . . . , K. (48b)

Indeed it has been shown [4] that these dynamical systems, (48), are isochronous, possessing
an open (hence fully dimensional) region in their phase space in which all their solutions are
completely periodic with period

T = 2π

ω
. (49)

It is easily seen that system (24) belongs to this class, (48), with K = 1, provided

a1 = −(2N − 1)iω, a2 = [a11 − (N − 1)a4]iω,

a3 = 2(N − 1)ω2, a5 = 2iω,

a6 = 0, a8 = iωa4,

a9 = −ω2, a10 = 0,

(50)

while the constants a4, a7, a11 and a12 remain arbitrary. It is clear that both systems, (6)
respectively (15), fall within this class, provided the constants Aj respectively Bj featured by
these two solvable models satisfy appropriate restrictions (whose explicit determination can
be left as a simple exercise for the diligent reader).

But here we like to use the more restrictive definition of entire isochronicity [4], stating
that a dynamical system is entirely isochronous if all its nonsingular solutions are completely
periodic with period T, or possibly with a (not arbitrarily large; indeed, generally rather small
[12]) integer multiple of T—implying that all nonsingular solutions of an entirely isochronous
system are in fact completely periodic with the same period, which however need not be the
primitive period for all of them; or, equivalently, that the property of isochronicity holds in
the entire phase space (with the possible exceptions of a lower dimensional set of initial data
yielding singular solutions).

One can then assert (see appendix B for a proof) that the N-body problem (6) is indeed
entirely isochronous provided the six constants Aj it features satisfy the following four
restrictions:

A1 = (k1 − Nk2)iω, (51a)
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A3 = 1

2
(k2 + k3)

[(
N − 1

2

)
(k2 − k3) − k1

]
ω2, (51b)

A5 = k2iω, (51c)

A6 = k2
3 − k2

2

4
ω2, (51d)

where ω is a positive constant, ω > 0 and the three numbers k1, k2, k3 are integers, unrestricted
(i.e., positive, negative or vanishing) except for the requirement

k1 �= −mk3 for m = 1, . . . , N. (51e)

Note that the two constants A2 and A4 remain completely arbitrary. Also note that, if
the two integers k1 and k2 vanish—entailing that A1 and A5 vanish, A1 = A5 = 0, and
A3 = (1−2N)A6, the only remaining restriction on A6 being that it be a positive real number,
A6 > 0—then the equations of motion (6) become real (of course provided real values are
also assigned to the two a priori arbitrary constants A2 and A4).

But there is a second, different class of entirely isochronous systems, that is obtained
from (a subclass of) the solvable system (6) with (8) via the standard ‘trick’ procedure (see for
instance [4]), as we now explain. To this end we take as a starting point the following special
case of the model (6):

ζ ′′
n = −2A4

ζn

+ 2
N∑

m=1,m�=n

ζ ′
nζ

′
m + A4

ζn − ζm

, (52)

which corresponds to (6) with all the constants Aj set to zero except A4 (and moreover
the purely notational replacement—convenient for what shall immediately follow—of the
dependent variables zn(t) with the dependent variables ζn(τ ), and of the independent variable
t with the independent variable τ , appended primes denoting of course differentiations with
respect to this new independent variable τ ). We then set

zn(t) = exp(−iωt)ζn(τ ), τ = exp(iωt) − 1

iω
, (53)

with ω being a positive constant, and we thereby obtain the new N -body model characterized
by the (autonomous) Newtonian equations of motion

z̈n = −iωżn − 2A4

zn

+ 2
N∑

m=1,m�=n

{(zn − zm)−1[(żn + iωzn)(żm + iωzm) + A4]}. (54)

Due to the way this model has been obtained it is clear that it describes an entirely isochronous
N-body problem—provided its initial data are constrained by conditions (10), guaranteeing
the validity of (8) (both for this model and for the model (52)). It is also easy to verify that
this model is not a special case of the entirely isochronous N-body problem identified above,
i.e. (6) with (51) (and of course with (8)).

Let us turn now to a discussion of entirely isochronous variants of the second class of
solvable models treated in this paper. The identification of such models cannot be explicitly
achieved in the general case along the same lines as done above—in the initial part of this
section—for models belonging to the first class of solvable systems, because in this second
case one cannot obtain explicitly the exponents λ(±)

m , as explained in the preceding section (see
the paragraph after (35)), unless the restriction (46) holds, in which case the treatment given
in the first part of this section for the first class of models can be immediately extended to the



New solvable many-body problems of goldfish type 5347

second class via relations (47), which however entail (see the last of these equations (47)) that
the restrictions (51) must now be complemented by the additional restriction

k2 + k3 = 0 or 2k1 = N(k2 − k3). (55)

It is moreover again possible, also for the models of the second class, to proceed via the
standard trick procedure. Since this approach is quite analogous to that described immediately
above for the first class, we deal with it quite tersely.

The starting point is now the solvable system (15) with all constants vanishing except B4,
which we now write as follows:

ζ ′′
n = B4

ζ ′
n

ζn

+
N∑

m=1,m�=n

2ζ ′
nζ

′
m + B4(ζ

′
n + ζ ′

m)

ζn − ζm

. (56)

It is now again appropriate to use the version (53) of the trick, obtaining thereby the N-body
problem—clearly entirely isochronous, because of the way it is obtained—characterized by
the following equations of motion:

z̈n = −iωżn + B4
żn + iωzn

zn

+
N∑

m=1,m�=n

2(żn + iωzn)(żm + iωzm) + B4[żn + żm + iω(zn + zm)]

zn − zm

.

(57)

6. Numerical results

In this section, we perform a numerical integration of the equations of motion (6) of the first
model in order to illustrate the previous findings. The numerical integration has been done
with an embedded Runge–Kutta method of order 8 (5, 3) with automatic step size control, as
developed by Prince and Dormand [13]. The integration and the graphical output have been
performed with the software DYNAMICS SOLVER8 developed by J Aguirregabiria.

In order to simplify our numerical treatment we have set in (6) N = 3, and A1 = A2 =
A5 = 0. Hence, our numerical study focuses on the following system of three nonlinear
complex ODEs of second order:

z̈n = A3zn − 2A4

zn

+
3∑

m=1,m�=n

(zn − zm)−1
[
2żnżm + 2

(
A4 + A6z

2
n

)]
. (58)

Generic (chaotic) behaviour. When A4 = 0, this system is solvable and it is a particular
case of the family discussed in chapter 2.3.3 of [2]. When A4 �= 0 and no restrictions are
imposed on the initial data, system (58) corresponds to the motion of the zeros of a third degree
polynomial whose coefficients evolve in time according to the nonlinear system (23). The
system behaves in general in a chaotic manner as can be evinced from the numerical results in
figures 1(e), (f ) and 2. The initial data for that integration have been chosen to be

z1(0) = 1.5 − 2i, ż1(0) = 2 − i

z2(0) = −1 + 0i, ż2(0) = −1 + i

z3(0) = 1.2 + 0.4i, ż3(0) = 2.32 − 0.76i,

(59)

which do not satisfy constraints (10), while the values of the coefficients are

A3 = −5.1π2, A4 = 15, A6 = π2. (60)

8 This program is available at http://tp.lc.ehu.es/jma/ds/ds.html.

http://tp.lc.ehu.es/jma/ds/ds.html
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(a) (b)

(c ) (d )

(e) (f )

Figure 1. Left column: trajectories of the three-body system (58) in the periodic (a), quasi-periodic
(c) or chaotic regimes (e). Right column: stereographic projection of the trajectories: the positions
of the three particles are plotted at every integer multiple of T = 1 up to 103 iterations.

6.1. Quasi-periodic behaviour

However, for the same values of these parameters, (60), initial data can be chosen within the
algebraic submanifold defined by (10). One such assignment is

z1(0) = 2 − 2i, ż1(0) = 2 − i,

z2(0) = −1 + 0i, ż2(0) = −1 + i,

z3(0) = 1.2 + 0.4i, ż3(0) = 2.32 − 0.76i.

(61)
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Figure 2. A plot of Im z2(t) for the choice of parameters and initial data described in section 6.
The periodic, quasi-periodic and chaotic behaviour are manifest.

As discussed in section 2, now system (58) is solvable, and it corresponds to the motion of the
zeros of a monic third degree polynomial whose coefficients evolve in time according to the
following linear system:

c̈1 − (4A6 + A3)c1 = 0, (62a)

c2 = 0, (62b)

c̈3 − 2A4c1 − 3(2A6 + A3)c3 = 0. (62c)

The solution of this system is trivial and from (3) and the discussion in section 4, we see that
it suffices that

4A6 + A3 < 0, 2A6 + A3 < 0

for the orbits to be confined. As it follows from (34) with (3), the coefficients of the polynomial
are in general quasi-periodic functions of time, hence also the behaviour of system (10) is
quasi-periodic as can be seen in figures 1(c), (d) and 2, where we have again assigned the
values (60) of the parameters, and the same initial data (61).

6.2. Isochronous behaviour

Following the discussion of section 5 and appendix B, the family of solvable problems
discussed above includes a subclass of entirely isochronous systems. They occur when all the
frequencies of the system are commensurable. A look at (51) reveals that these conditions are
met if we choose

A1 = A5 = 0, A3 = − 5
4k2

3ω
2, A6 = 1

4k2
3ω

2. (63)

We set k3 = 1 and ω = 2π so that the fundamental period is T = 1. The choice of parameters
is then

A3 = −5π2, A4 = 15, A6 = π2, (64)
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and the initial data are the same as in the previous case (61). The resulting motions are shown
in figures 1(a), (b) and 2.

7. Outlook

The novel cases treated in this paper do not exhaust all the possible solvable many-body
problems associated with the motion of the roots of polynomials whose coefficients satisfy a
linear system of ODEs. This question is related to the classification of exceptional subspaces
Xk with co-dimension k > 1, which has not yet been completed. However, as mentioned in
appendix A, some results based on X2 spaces and operators will be reported soon [5].
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Appendix A

In this appendix, we explain the general method to write down certain PDEs in 1+1 dimensions
possessing solutions which are monic polynomials ψ(z, t) of degree n in z whose N coefficients
are time-dependent functions cm(t). The requirement to ensure the solvability of the nonlinear
N-body problem characterizing the time evolution of the N zeros zn(t) of such a polynomial
is that the coefficients cm(t) evolve according to a linear system of ODEs.

Let us denote by PN the vector space of polynomials in z of degree less than or equal
to N:

PN = span{1, z, z2, . . . , zN }, dimPN = N + 1. (A.1)

We shall also denote by D2(PN) the vector space of differential operators of order 2 in z with
analytic coefficients that leave the space PN invariant, i.e.

D2(PN) = {T = a2(z)Dzz + a1(z)Dz + a0(z)|TPN ⊂ PN }. (A.2)

Notation: here and below we use the notation Dz ≡ ∂/∂z,Dzz ≡ ∂2/∂z2,Dt ≡ ∂/∂t,Dtt ≡
∂2/∂t2, and Dzt ≡ ∂2/∂z∂t .

Consider the action of the most general linear second-order partial differential operator
in z and t:

L = a1Dtt + a2Dzt + a3Dzz + a4Dz + a5Dt + a6, ai = ai(z, t) (A.3)

on the following time-dependent polynomial of degree N in z (see (2)),

ψ(z, t) =
N∏

n=1

[z − zn(t)] = zN +
N∑

m=1

cm(t)zN−m. (A.4)

The restriction to second-order operators ensures that the nonlinear many-body problem
for the zeros will have at most two-body interactions, which is the more physically interesting
case. If many-body interactions are allowed, it is obvious that the class of such solvable
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systems that can be constructed with this method is larger. Since we want the evolution
of the coefficients cm(t) to be a linear autonomous (hence solvable) system, we assume
ai(z, t) = ai(z) and without loss of generality we also set a1(z) = 1.

We now examine the conditions on ai(z) such that the equation L[ψ] = 0 implies a linear
system for cm(t). These conditions arise from imposing that L acting on ψ(z, t) produces a
polynomial of degree N − 1. They are satisfied by a second-order differential operator in z

and t only in the following cases:

• the second-order differential operator Dtt ;
• one of the following four differential operators of first-order in t:

Dt, Dzt , zDzt , z[zDzt − (N − 1)Dt ]; (A.5)

• a second-order differential operator in z that maps PN to PN−1.

The characterization of vector spaces of linear (and nonlinear) differential operators in
one and several variables of any given order that map PN to PN−k has been treated in [9].
Working out all the possible cases for a second-order differential operator in one variable that
maps PN to PN−1 is a simple exercise that produces the following result:

T +1
2 = z(zDz − N + 1)(zDz − N + 2), (A.6a)

T 0
2 = z2Dzz − N(N − 1), (A.6b)

T −1
2 = zDzz, (A.6c)

T −2
2 = Dzz, (A.6d)

T 0
1 = zDz − N, (A.6e)

T −1
1 = Dz. (A.6f )

A linear combination of the eleven operators written above is precisely equation (1) of
this paper, which was treated in section 2.3.3 of [2] (and several specific cases were then
investigated in section 2.3.4). However, the question arises whether this is the most general
class of PDEs in z and t which admit as solutions polynomials in z whose coefficients are
functions of t that evolve according to a linear system. The recent discovery of the so-called
exceptional polynomial subspaces of PN shows that other PDEs with those properties exist
(and therefore other solvable many-body problems) provided some constraints are imposed.

An exceptional polynomial subspace M(k)
N of co-dimension k in PN is defined by the

property that some second-order differential operators that preserve M(k)
N do not preserve PN .

More specifically, consider a space M(k)
N ⊂ PN generated by N + 1 − k linearly independent

polynomials, all of them of degree at most N:

M(k)
N = span{p1(z), . . . , pN+1−k(z)}. (A.7)

We will say thatM(k)
N is an exceptional polynomial subspace of co-dimension k inPN (for short,

an Xk space) if D2
(
M(k)

N

) �⊂ D2(PN). Such exceptional subspaces do exist, and they provide
novel differential operators with polynomial eigenfunctions. Exceptional subspaces have been
first analysed in the context of quasi-exactly solvable potentials in quantum mechanics [7, 10];
they are also connected with the Darboux transformation [8] and with non-classical families
of orthogonal polynomials [11]. X1 spaces have been fully classified arriving at the result that
there is essentially one such subspace up to projective transformations. This space is precisely

X1 = span{1, z2, z3, . . . , zN }, (A.8a)
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which can also be characterized as

X1 = {p ∈ PN |p′(0) = 0}. (A.8b)

It can be shown that dimD2(X1) = 7. The most interesting element of this space is the
operator

Dzz − 2

z
Dz, (A.9)

which preserves X1 but not PN . The first class of models treated in this paper—see (6)—is
related to this exceptional space X1, and the novel term proportional to the constant A4 in the
many-body problem (6) is precisely that due to the inclusion of this operator. The constraint
on the many-body problem (8) is precisely the one that defines the exceptional subspace X1.
The second class of many-body models treated above has a different origin, not related to the
exceptional subspaces of PN , being instead associated with the role of the time derivative,
see (A.5).

Exceptional subspaces of higher co-dimension exist but a full classification is not yet
available. Some new many-body problems with constraints associated with X2 spaces will be
treated in a forthcoming publication [5], their main novelty being that the coefficients of the
new differential operators are not only inverse powers but rational functions of z.

Appendix B

In this appendix, we justify the assertion made in section 5, that conditions (51a–51d)
guarantee that the N-body model (6) with (10) is entirely isochronous.

Indeed, clearly this N-body problem is entirely isochronous if all the solutions of the
corresponding linear problem (7) are completely periodic with the same period T (readers for
whom this is not clear are advised to consult, say, [4]). Clearly a necessary and sufficient
condition for this to happen is that the 2N eigenvalues λ(±)

m , see (3), be all integer multiples of
a common imaginary constant, say

λ(±)
m = k(±)

m iω, (B.1a)

with ω being a positive constant, ω = 2π/T > 0, and the coefficients k(±)
m all integers, and

moreover that

λ(+)
m �= λ(−)

m , (B.1b)

for all values of the index m, i.e. for m = 1, . . . , N . Clearly the first of these two relations,
(B.1a), can only be true if the quantity �2

m, see (42b), is a perfect square for all values of m,
so that

�m = α + βm, (B.2)

clearly entailing (see (42b))

α = NA5 + A1, β2 = A2
5 − 4A6, (B.3a)

and (as we hereafter assume)

2A3 + 2(2N − 1)A6 − A5(NA5 + A1) = αβ. (B.3b)

Via (3) these formulae yield

λ(+)
m = α +

m

2
(β − A5), λ(−)

m = −m

2
(β + A5). (B.4)

Hence (B.1a) entails

α = k1iω, β − A5 = 2j iω, β + A5 = 2kiω, (B.5)
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with k1, j, k being integers, and the (sum and difference of the) last two formulae entail

A5 = k2iω, β = k3iω, (B.6)

with k2 and k3 being integers. Hence the two equations (B.3a) yield

A1 = (k1 − Nk2)iω, A6 = k2
3 − k2

2

4
ω2, (B.7)

and from (B.1b) one finally gets

A3 = 1
2 (k2 + k3)

[(
N − 1

2

)
(k2 − k3) − k1

]
ω2. (B.8)

The four formulae (51e) are thereby proven. And it is moreover clear that condition
(B.1b) entails the requirement (51e), thereby completing the proof of the results reported in
section 5.
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[10] Gómez-Ullate D, Kamran N and Milson R 2007 Quasi-exact solvability beyond the SL(2) algebraization Phys.
At. Nucl. 70 520–8 (Preprint nlin.SI/0601053)
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